Please check the examination details	below before ente	ring your candidat	e information
Candidate surname		Other names	
Pearson Edexcel Level 3 GCE	Centre Number	Car	ndidate Number
Tuesday 23 Ju	ne 202	20	
Afternoon (Time: 1 hour 30 minute	s) Paper R	eference 9FM	10/4C
Further Mathematics Advanced Paper 4C: Further Mechanics 2			
You must have: Mathematical Formulae and Statistical Tables (Green), calculator Total Marks			

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Unless otherwise indicated, whenever a value of g is required, take $g = 9.8 \,\mathrm{m}\,\mathrm{s}^{-2}$ and give your answer to either 2 significant figures or 3 significant figures.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 7 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

1. Three particles of masses 3m, 4m and 2m are placed at the points (-2, 2), (3, 1) and (p, p) respectively.

The value of p is such that the distance of the centre of mass of the three particles from the point (0, 0) is as small as possible.

www.mymathscloud.com

Find the value of *p*.

(7)

sum of moments = total mass x COM	moments = force x perpendicular distance
ALSO written as	V v
<u>v</u>	for porce we using the coordinates
$\sum m_i x_i = \overline{x} \sum m_i$	use mass xg but
i=1 i=1 for 21 axis	since 'g' is in every
<u> </u>	term it cancels out
$\sum_{i} m_i y_i = \overline{y} \sum_{i} m_i$	so we can just use
i=1 for y axis	mass

<u>Using vector form</u>

$$3m \begin{pmatrix} -2 \\ 2 \end{pmatrix} + 4m \begin{pmatrix} 3 \\ 1 \end{pmatrix} + 2m \begin{pmatrix} \rho \\ \rho \end{pmatrix} = 9m \begin{pmatrix} \overline{\varkappa} \\ \overline{y} \end{pmatrix}$$

$$\begin{pmatrix} -6 \\ 6 \end{pmatrix} + \begin{pmatrix} 12 \\ 4 \end{pmatrix} + \begin{pmatrix} 2\rho \\ 2\rho \end{pmatrix} = \begin{pmatrix} 9\overline{\varkappa} \\ 9\overline{y} \end{pmatrix}$$

$$6+2p = 9\overline{\varkappa} \qquad 10+2p = 9\overline{y}$$

$$\overline{\varkappa} = \frac{6+2p}{9} \qquad \overline{y} = \frac{10+2p}{9}$$

Distance from
$$(0,0)$$
:
$$\left(\frac{6+2p}{q}\right)^2 + \left(\frac{10+2p}{q}\right)^2 = \frac{4p^2+24p+36}{8!} + \frac{4p^2+40p+100}{8!}$$

$$= \frac{8p^2+64p+136}{8!}$$
minimum distance from $(0,0)$ $= \frac{8p^2+64p+136}{8!}$ for this to be g. minimum value $= 8p^2+64p+136$ must be at minimum
$$\frac{8p^2+64p+136}{8!}$$

$$= \frac{8p^2+64p+136}{8!}$$

$$= \frac{8p^2+64p+136}{8!$$

www.mymathscloud.com Question 1 continued
Ougstion 1 continued
Question 1 continued
(Total for Question 1 is 7 marks)

DO NOT WRITE IN THIS AREA

Figure 1

R

Figure 2

A uniform plane figure R, shown shaded in Figure 1, is bounded by the x-axis, the line with equation $x = \ln 5$, the curve with equation $y = 8e^{-x}$ and the line with equation $x = \ln 2$. The unit of length on each axis is one metre.

The area of R is $2.4 \,\mathrm{m}^2$

 \overline{O}

ln 2

The centre of mass of R is at the point with coordinates (\bar{x}, \bar{y}) .

(a) Use algebraic integration to show that $\bar{y} = 1.4$

(4)

Figure 2 shows a uniform lamina ABCD, which is the same size and shape as R. The lamina is freely suspended from C and hangs in equilibrium with CB at an angle θ° to the downward vertical.

(b) Find the value of θ

a)
$$My = \int_{a}^{\frac{1}{2}} \int y^{2} dx$$
 To pind COM of laming under y between a and b in y axis

Applying pormulae where $g = mass$ per unit area (cancels out anyways)

$$2.4 \text{ f } \overline{y} = \frac{1}{2} \text{ f } y^2 \text{ dx}$$

$$2.4 \overline{y} = \frac{1}{2} \int_{\ln 2}^{\ln 5} (\text{ancelling out } f)$$

$$2.4 \overline{y} = \left[-16e^{-2x}\right]_{\ln 5}^{\ln 5}$$

$$2.4\overline{y} = -16e^{-2\ln 5} - \left(-16e^{-2\ln 2}\right)$$

$$2.4\overline{y} = -16\left(\frac{1}{25}\right) + 16\left(\frac{1}{4}\right)$$

$$2.4\overline{y} = \frac{84}{25}$$

$$\overline{y} = \frac{7}{5}$$

= 1.4

Goodnotes

Question 2 continued

b) $M\bar{x} = \int_{a}^{b} xy \, dx$ To find COM of lamina under y between

a and b in x axis

Applying pormulae

where f = mass per unit area (carcels out anyways)

$$2.4\bar{x} = \int_{\ln 2}^{\ln 5} 8xe^{-x} dx$$

Let
$$u = 8x$$
 $v = -e^{-x}$

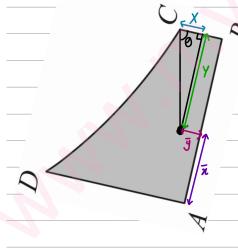
$$\frac{du}{dx} = 8$$

$$\frac{dv}{dx} = e^{-x}$$

$$uv - \int v \frac{du}{dx}$$

$$-8xe^{-x} - \int -8e^{-x} dx$$

$$= -8xe^{-x} - 8e^{-x} + C$$


$$2.4\bar{x} = \begin{bmatrix} -8xe^{-x} - 8e^{-x} \end{bmatrix}_{\ln 2}^{\ln 5}$$

$$2.4\pi = -8 (\ln 5) e^{-\ln 5} - 8 e^{-\ln 5} - (-8(\ln 2) e^{-\ln 2} - 8 e^{-\ln 2})$$

$$2.4 \, \overline{x} = -\frac{8}{5} \ln 5 - \frac{8}{5} - \left(-4 \ln 2 - 4\right)$$

$$2.4 \, \bar{x} = -\frac{8}{5} \left(\ln 5 + 1 \right) + 4 \left(\ln 2 + 1 \right)$$

$$\bar{x} = 1.08 \quad (3.5)$$

At
$$x = \ln 5$$
, $y = 8e^{-\ln 5} = \frac{8}{5}$

$$\chi = \frac{8}{5} - \frac{7}{9}$$

$$X = \frac{8}{5} - \frac{7}{5}$$

use exact value from

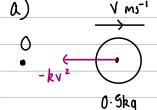
part b)

$$\theta = \arctan \left(2.63... \right)$$

www.mymathscloud.com	Nymains cloud co
	athscloud
Question 2 continued	
	DO NOT WRITE IN THIS AREA
	- OTWI
	- 3
	ARE
	-
	$-\ $
	N
	— WRIT
	DO NOT WRITE IN THIS AREA
	REA
	$-\ $
	$-\ $
	00 2
	— OTW
	DO NOT WRITE IN THIS AREA
	$-\ $
	ーノ ※

www.mymathscloud.com Question 2 continued
Question 2 continued
Question 2 continued
(Total for Question 2 is 10 marks)
(Total for Question 2 is to marks)

3. A particle P of mass 0.5 kg is moving along the positive x-axis in the direction of x increasing. At time t seconds $(t \ge 0)$, P is x metres from the origin O and the speed of P is $v \text{ m s}^{-1}$. The resultant force acting on P is directed towards O and has magnitude kv^2N , where k is a positive constant.


When x = 1, v = 4 and when x = 2, v = 2

(a) Show that $v = ab^x$, where a and b are constants to be found.

The time taken for the speed of P to decrease from $4 \,\mathrm{m\,s^{-1}}$ to $2 \,\mathrm{m\,s^{-1}}$ is T seconds.

(b) Show that
$$T = \frac{1}{4 \ln 2}$$

(4)

Forming differential equation

Separating variables $\int \frac{1}{2v} dv = \int -k dx$ and integrating

$$\frac{1}{2}\ln v = -kx + C$$

Applying conditions

$$ln2 = k$$

into 1)
$$\frac{1}{2} \ln 4 = -\frac{1}{2} \ln 2 + C$$

$$C = \frac{1}{2} \ln 4 + \frac{1}{2} \ln 2$$

$$C = \frac{3}{2} \ln 2$$

$$\frac{1}{2} \ln V = -\frac{1}{2} \times \ln 2 + \frac{3}{2} \ln 2$$

$$\ln V = \ln \left(\left(\frac{1}{2} \right)^{x} \right) + \ln 8$$

$$\ln V = \ln \left(8 \cdot \left(\frac{1}{2} \right)^{x} \right)$$

$$V = 8 \times \left(\frac{1}{2} \right)^{x}$$

$$\ln V = \ln \left(8 \cdot \left(\frac{1}{2} \right)^{\alpha} \right)$$

Where
$$a = 8$$
 and $b = \frac{1}{2}$

4 to 2 for v and

Question 3 continued

b)
$$F = m \frac{dv}{dt}$$

Applying formulae

$$\frac{0.5 \, dv}{dt} = -kv^2$$

$$\int \text{Substitute } k \text{ pound in a}$$

$$\frac{dv}{dt} = -\ln 2 v^2$$

$$\int_{4}^{2} \frac{1}{v^{2}} dv = \int_{0}^{T} -\ln 2 dt$$
Separating variables + integrating with boundaries 4 to 2 par
$$\int_{4}^{2} \frac{1}{v^{2}} dv = \int_{0}^{T} -\ln 2 dt$$
Separating variables + integrating with boundaries 4 to 2 par

$$T = \frac{1}{4 \ln 2}$$

Turn over ▶

0.0
www.mymathscloud.com Question 3 continued

www.mymathscloud.com Question 3 continued
Question 3 continued
Question 5 continued
(Total for Question 3 is 10 marks)

(5)

4.

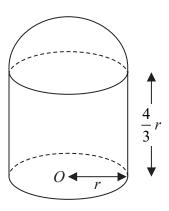
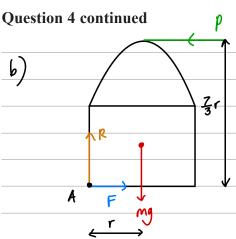


Figure 3

A uniform solid cylinder of base radius r and height $\frac{4}{3}r$ has the same density as a uniform solid hemisphere of radius r. The plane face of the hemisphere is joined to a plane face of the cylinder to form the composite solid S shown in Figure 3. The point O is the centre of the plane face of S.


(a) Show that the distance from O to the centre of mass of S is $\frac{73}{72}r$

The solid S is placed with its plane face on a rough horizontal plane. The coefficient of friction between S and the plane is μ . A horizontal force P is applied to the highest point of S. The magnitude of P is gradually increased.

(b) Find the range of values of μ for which S will slide before it starts to tilt.

a) Shape	Mass	Mass Ratio	COM from base	
Hemisphere	$\frac{4}{3}\pi r^3 \times \frac{1}{2} f$	1	$\frac{4}{3}\Gamma + \frac{3}{8}\Gamma = \frac{41}{24}\Gamma$	
Cylindar	$\frac{4}{3}\pi r^3 \beta$	2	$\frac{2}{3}$ r	
5	2 mr3 p	3	d	

$\geq m_i x_i = \overline{x} \geq m_i$	Using sum of moments about diameter of the base
where sum of moments of each component	
is equal to the singular moment through the COM	$1x \frac{41}{24}r + 2x \frac{2}{3}r = 3d$
Use mass ratios to simplify calculation	$\frac{73}{24} r = 3d$
	$d = \frac{73}{72} r$
	12

Resolving pones horizantally (->)

$$F = P$$

where F = priction

Solid slides if P>peng

Taking moments about A

$$\frac{7}{3}$$
r $p = r mg$

$$P = \frac{3}{7}$$
 mg (if moments are balanced)

 $P = \frac{3}{7} \text{ mg}$ (if moments are balanced) \therefore Tilts if $P > \frac{3}{7} \text{ mg}$ since solid will have a resultant moment

So slides begone it starts to tilt when μ mg $<\frac{3}{7}$ mg

$$=> 0 < \mu < \frac{3}{7}$$

www.mymathscloud.com Question 4 continued	1414
Question 4 continued	th _{SClOUD}
	- 3
	-
	- X
	-
	- 3
	- 2
	-
	-
	- 🐰
	- 3
	-
	J₩

www.mymathscloud.com Question 4 continued
Question 4 continued
Question 4 continued
(Total for Question 4 is 9 marks)

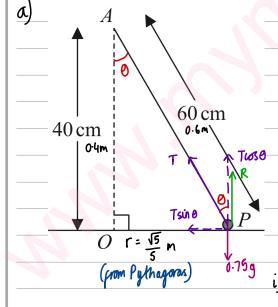
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Figure 4

A particle P of mass $0.75 \,\mathrm{kg}$ is attached to one end of a light inextensible string of length $60 \,\mathrm{cm}$. The other end of the string is attached to a fixed point A that is vertically above the point O on a smooth horizontal table, such that $OA = 40 \,\mathrm{cm}$. The particle remains in contact with the table, with the string taut, and moves in a horizontal circle with centre O, as shown in Figure 4.

The particle is moving with a constant angular speed of 3 radians per second.


- (a) Find (i) the tension in the string,
 - (ii) the normal reaction between P and the table.

(7)

The angular speed of P is now gradually increased.

(b) Find the angular speed of P at the instant P loses contact with the table.

(4)

$60 = \frac{40}{60} = \frac{2}{3}$
60 3
$\sin 0 = \frac{\sqrt{5}}{5} \div 0.6 = \frac{\sqrt{5}}{3}$

Resolving porces honizantally (-): (iroular motion

$$T \sin \theta = M \omega^{2} r$$

$$\frac{\sqrt{5}}{3} T = 0.75 (3)^{2} (\frac{\sqrt{5}}{5})$$

$$\frac{\sqrt{5}}{3} T = \frac{27\sqrt{5}}{20}$$

$$T = \frac{81}{20} = 4.05 N$$

(i) Substituting T into expression above
$$R = \frac{39}{4} - \frac{2}{3} (4.05) = \frac{4.65}{4.65} N$$

Question 5 continued

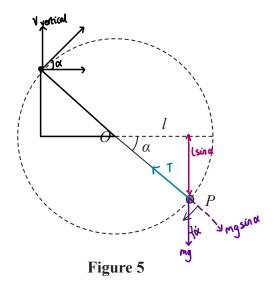
$$R(\uparrow): T \cos \theta = 0.75 g \qquad \qquad R(\Leftarrow): T \sin \theta = 0.75 x \frac{15}{5} w^{2}$$

$$(\text{vertically}) \qquad T = 0.75 g \div \frac{2}{3} \qquad \text{(horizontally})$$

$$T = \frac{441}{40} N \qquad \qquad w = \frac{T \sin \theta}{0.75 x \frac{15}{5}}$$

$$T = 11.025 N \qquad \qquad 0.75 x \frac{15}{5}$$

$$= \frac{11.025 \left(\frac{\sqrt{5}}{3}\right)}{0.75 \times \frac{\sqrt{5}}{5}}$$


$$W = \frac{7\sqrt{2}}{2} \text{ rad } 5^{-1} \approx 4.95 \text{ rad } 5^{-1}$$

www.mymathscloud.com Question 5 continued	14 13 E
Question 5 continued	h _{SCIOUR}
	J 🎇

www.mymathscloud.com Question 5 continued
Question 5 continued
(Total for Question 5 is 11 marks)
(10tti 101 Question 3 is 11 marks)

6.

A particle P of mass m is attached to one end of a light inextensible string of length l. The other end of the string is attached to a fixed point O. The particle is held with the string taut and OP horizontal. The particle is then projected vertically downwards with speed u, where $u^2 = \frac{9}{5}gl$. When OP has turned through an angle α and the string is still taut, the speed of P is v, as shown in Figure 5. At this instant the tension in the string is T.

(a) Show that
$$T = 3mg \sin \alpha + \frac{9}{5}mg$$

(6)

- (b) Find, in terms of g and l, the speed of P at the instant when the string goes slack.
 - (3)
- (c) Find, in terms of *l*, the greatest vertical height reached by *P* above the level of *O*.

(4)

a) (onservation of energy less long ports towards can be of aircle

$$\frac{1}{2}mv^{2} = \frac{1}{2}mu^{2} + mgh$$

$$\frac{1}{2}mv^{2} = \frac{1}{2}mu^{2} + mgl sin \alpha$$

$$V^{2} = u^{2} + 2gl sin \alpha$$

$$V^{2} = \frac{9gl}{5} + 2gl sin \alpha$$

$$T = mg sin \alpha + \frac{m}{5} + 2gl sin \alpha$$

$$T = mg sin \alpha + \frac{9mg}{5} + 2mg sin \alpha$$

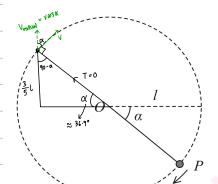
$$T = 3mg sin \alpha + \frac{9mg}{5}$$

Question 6 continued

b) When string goes slack
$$T=0$$
 c) Greatest vertical height reached \Longrightarrow $T=0$ since string goes slack

Set $T=0$ initial vertical component of speed $= \sqrt{6030} = \frac{4}{5} \sqrt{\frac{391}{5}}$
 $0 = 3 \text{ mg sin } \alpha + \frac{9 \text{ mg}}{5}$ after string goes slack

$$\frac{-9mg}{5} = \frac{3mg \sin \alpha}{5}$$


$$\sin \alpha = -\frac{3}{5}$$

$$V^2 = \frac{9gl}{5} + 2gl \sin \alpha$$

$$V = \begin{bmatrix} 901 \\ 5 \end{bmatrix} + 291 \left(-\frac{3}{5}\right)$$

$$V = \begin{bmatrix} 9gl & 6gl \\ 5 & 5 \end{bmatrix}$$

$$V = \boxed{\frac{39l}{5}}$$

$$\sin \alpha = -\frac{3}{5}$$

 $\alpha = -36.9^{\circ}, 216.9^{\circ}$

Then use SUVAT to calculate max height reached

$$V^{2} = U^{2} + 2as$$

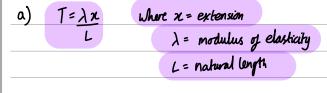
$$S = ?$$

$$U = \frac{4}{5} \sqrt{\frac{3gL}{5}}$$

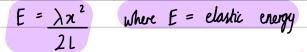
$$0 = \left(\frac{4}{5} \left(\sqrt{\frac{3gL}{5}}\right)\right)^{2} + 2(-g)h$$

$$0 = \frac{16}{25} \times \frac{39l}{5} - 29h$$

$$0 = \frac{16}{25} \times \frac{39l}{5} - 29h$$

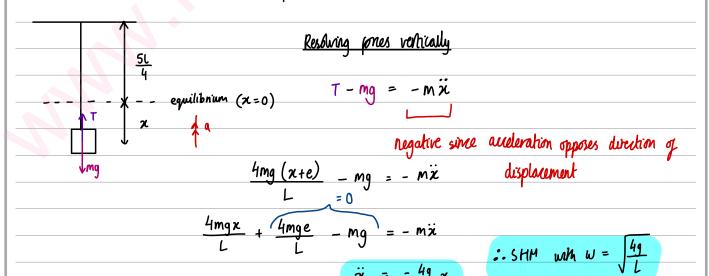

$$1 = \frac{16}{25} \times \frac{39l}{5} = \frac{24l}{125}$$

Question 6 continued


www.mymathscloud.com Annumental Manual Manu	
Question 6 continued	
Question o continued	B
(Total for Question 6 is 13 marks)	

- 7. A light elastic spring has natural length l and modulus of elasticity 4mg. A particle P of mass m is attached to one end of the spring. The other end of the spring is attached to a fixed point A. The point B is vertically below A with $AB = \frac{7}{4}l$. The particle P is released from rest at B.
 - (a) Show that P moves with simple harmonic motion with period $\pi \sqrt{\frac{l}{g}}$
- (7)
- (b) Find, in terms of m, l and g, the maximum kinetic energy of P during the motion.
- (3)
- (c) Find the time within each complete oscillation for which the length of the spring is less than *l*.
 - (5)

At equilibrium


Resolving porces restically at equilibrium

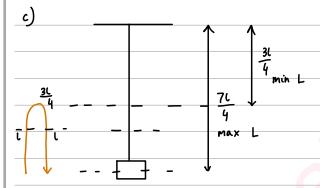
a=0

$$T - mg = ma$$

mg

$$T = Mq$$

Question 7 continued


a = amplitude w = angular speed

$$KE_{max} = \frac{1}{2} M V_{max}^2$$

$$KE_{\text{max}} = \frac{1}{2} M \left(\frac{L}{2} \sqrt{\frac{4g}{L}} \right)^2$$

$$= \frac{1}{2} m \frac{l^2}{4} \left(\frac{4g}{l} \right)$$

KEmax = 1 mgl

4 complete oscillation

$$\chi = \frac{L}{2} \cos t \int_{1}^{49}$$

When
$$x = -\frac{L}{4}$$
 (spring's length = L)
(displacement from equilibrium)

$$-\frac{1}{4} = \frac{1}{2} \log t \frac{49}{l}$$

$$\cos t \frac{49}{l} = -\frac{1}{2}$$

$$t \frac{49}{l} = \frac{2\pi}{3}$$

$$t = \frac{\pi}{3} \frac{1}{9}$$
Time period of one oscillation = $\frac{2\pi}{49} = \frac{2\pi}{49} = \frac{2\pi}{49} = \frac{2\pi}{49} = \frac{2\pi}{49} = \frac{2\pi}{49} = \frac{\pi}{49} = \frac{\pi}{49$

www.mymathscloud.com

www.mymathscloud.com Question 7 continued	1414
Question 7 continued	th _{SCloud}
	- 3
	- 3
	-
	-
	- \$
	- 1
	-
	-
	- 🐰
	. 5
	- \$
	-
	J

www.mymathscloud.com	MANNA MARIA STOLEY
Question 7 continued	Althe Olouge

www.mymathscloud.com
www.mymathscloud.com Question 7 continued
Question 7 continued
(Total for Question 7 is 15 marks)
TOTAL FOR PAPER IS 75 MARKS

28